Author
Listed:
- Xiaoqian Qin
- Dakun Liu
- Bin Gui
Abstract
Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs. To address these challenges, this paper proposes a novel correlation calculation-based multi-task learning (CCMTL) method specifically designed for kinship verification. It has been observed that kin members often exhibit a high degree of similarity in key facial organs, such as eyes, mouths, and noses. Given this similarity, similar facial features between kin members with different kin relationships frequently demonstrate certain correlations. Inspired by this observation, our proposed method aims to learn a set of metrics by leveraging both the specified kinship data and the correlations among various kinship types. These correlations are determined through an in-depth investigation of the spatial distribution relationship between the specified kinship data and other kinship types. Furthermore, we develop an efficient algorithm within the multi-task learning framework that integrates correlation exploitation with metric learning. This innovative approach effectively resolves the issue of information isolation while minimizing computational overhead. Extensive experimental validation conducted on the KinFaceW dataset demonstrates that the proposed CCMTL method achieves superior or comparable results to those of existing methods.
Suggested Citation
Xiaoqian Qin & Dakun Liu & Bin Gui, 2025.
"Kinship verification via correlation calculation-based multi-task learning,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-21, September.
Handle:
RePEc:plo:pone00:0329574
DOI: 10.1371/journal.pone.0329574
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0329574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.