Author
Abstract
Recent advances in cow identification have been instrumental in enhancing understanding of disease progression, optimizing vaccination strategies, improving production management, ensuring animal traceability, and facilitating ownership assignment. Cow identification and tracking involve the precise recognition of individual cows and their products through unique identifiers or markers. Traditional methods like computer vision, ear tags, branding, tattooing, microchips, and other electrical methods have been widely employed for cow identification and tracking over an extended period of time. However, these methods are prone to reliability issues caused by external factors such as physical damage, tag loss, weather-induced fading or damage, and the need for a software-based management system with RFID, which may not always be satisfactory for identifying cows. Merging near-infrared spectroscopy and routinely collected main components of raw milk (fat, protein, lactose, urea, and somatic cell count) with artificial intelligence offers a non-invasive, data-driven approach for cow identification, potentially increasing applicability in farm environments where such milk data are already part of routine monitoring. In this study, we presented an alternative approach to cow identification utilizing near-infrared spectral measurements alongside laboratory reference values for the main components of raw milk. In order to test our proposed method, we used a publicly available and newly released dataset of 1224 different measurements collected from 41 cows over a period of 8 weeks. Depending on the considered measurements and number of cows, the Naïve Bayes, Decision Tree, and Support Vector Machines classifiers achieved classification accuracy rates of between 69.23%−98.63%, 61.87%−100%, and 58.53%−97.26%, respectively. We believe that the proposed method has great potential to be an alternative way for cow identification applications.
Suggested Citation
Tugba Aydemir, 2025.
"A new cow identification method using near-infrared spectral measurements and main components of raw milk features,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-14, August.
Handle:
RePEc:plo:pone00:0329499
DOI: 10.1371/journal.pone.0329499
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0329499. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.