Author
Abstract
Background: The rapid development of urban systems and rising requirements for sustainable development lift resource management issues in smart communities. A fundamental problem for contemporary communities involves effectively using energy and water resources and waste management systems under environmental limitations. Artificial intelligence (AI) techniques at an advanced level deliver new methods that optimize resource management systems. Objective: The research builds and examines a deep-learning framework that optimizes the management of smart community resources. The framework leverages long short-term memory (LSTM) networks for temporal data, convolutional neural networks (CNNs) for spatial analysis, and autoencoders for anomaly detection. The system focuses on two main objectives, which include better forecasting precision, optimum resource distribution, and efficient detection of operational problems. Methods: Research validation employed data from the Amsterdam Open Data Platform and Singapore Government Open Data Portal joined by crowdsourced platforms FixMyStreet and OneService. The preprocessing phase involved three stages, i.e., cleaning and normalization and feature engineering steps, before model training and testing phases. Predictive models received assessment based on Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R². A comparison with traditional methods revealed the proposed approach delivered superior performance results. Results: The deep learning framework demonstrated superior performance, achieving an average reduction of 18.7% in resource consumption and a 16.2% reduction in operational costs. The models outperformed baseline methods, with LSTMs achieving an MAE of 1.8 for water demand prediction and autoencoders detecting anomalies with an F1-score of 95.5%. Conclusion: Due to its effective capabilities, the proposed framework solves challenges in resource management for smart communities while showing the potential of AI-driven solutions for sustainable urban development. Research results demonstrate that integrating sophisticated deep-learning methods yields more significant potential for optimizing resource utilization while improving operational effectiveness.
Suggested Citation
Yongyan Zhao, 2025.
"Advancing smart communities with a deep learning framework for sustainable resource management,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-21, August.
Handle:
RePEc:plo:pone00:0329492
DOI: 10.1371/journal.pone.0329492
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0329492. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.