Author
Abstract
Age-period-cohort (APC) analysis, one of the fundamental time-series models, has an identification problem of the inability to separate linear components of the three effects. However, constraints to solve the problem are still controversial because multilevel analysis used in many studies results in the linear component of cohort effects being close to zero. In addition, previous studies do not compare the Bayesian cohort model proposed by Nakamura with the well-known intrinsic estimator. This paper focuses on three models of Bayesian regularization using priors of normal distributions. A random effects model refers to multilevel analysis, a ridge regression model is equivalent to the intrinsic estimator, and a random walk model refers to the Bayesian cohort model. Here, applying Bayesian regularization in APC analysis is to estimate linear components by using nonlinear components and priors. We aim to suggest conditions for using the random walk model by comparing the three models through some simulations with settings for the linear and nonlinear components. Simulation 1 emphasizes an impact of the indexes by making absolute values of the nonlinear components small. Simulation 2 randomly generates the amounts of change in the linear and nonlinear components. Simulation 3 randomly generates artificial parameters with only linear components are less likely to appear, to consider the Bayesian regularization assumption. As a result, Simulation 1 shows the random walk model, unlike the other two models, mitigates underestimating the linear component of cohort effects. On the other hand, in Simulation 2, none of the models can recover the artificial parameters. Finally, Simulation 3 shows the random walk model has less bias than the other models. Therefore, there is no one-size-fits-all APC analysis. However, this paper suggests the random walk model performs relatively well in data generating processes, where only linear components are unlikely to appear.
Suggested Citation
Yuta Matsumoto, 2025.
"Some simulations of age-period-cohort analysis applying Bayesian regularization: Conditions for using random walk model,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-21, August.
Handle:
RePEc:plo:pone00:0329223
DOI: 10.1371/journal.pone.0329223
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0329223. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.