Author
Listed:
- Quyuan Wang
- Xinyu Ni
- Yuping Tu
- Ying Wang
- Jiadi Liu
Abstract
The rapid development of edge computing and artificial intelligence has brought growing interest in collaborative training. While prior research has addressed technical aspects of resource allocation, less attention has been paid to the underlying economic mechanisms of resource trading. In this study, we examine how task publishers can effectively allocate budgets between computational and data resources during co-training. To address the uncertainty in data acquisition, we introduce Constant Proportion Portfolio Investment approach to assist in the construction of the payoff maximization problem with budget constraints. With the aid of economic tools, we design Swing Gradient Search Algorithm to obtain the optimal investment portfolio strategy, thereby addressing the coupling relationship between the quantities of resource acquisition. We also explore how market dynamics evolve in response to changes in supply and demand. To maintain dynamic market equilibrium, we develop two types of pricing algorithms, one based on stepped price adjustments for selected sellers, and another based on smoothed adjustments for all sellers. Simulation results demonstrate that the proposed strategies and algorithms offer acceptable performance in terms of algorithmic efficiency and strategic effectiveness, while also preserving fundamental economic principles and supporting stable market dynamics.
Suggested Citation
Quyuan Wang & Xinyu Ni & Yuping Tu & Ying Wang & Jiadi Liu, 2025.
"Resource trading strategies with risk selection in collaborative training market,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-22, July.
Handle:
RePEc:plo:pone00:0328625
DOI: 10.1371/journal.pone.0328625
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328625. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.