Author
Listed:
- Kai Heinrich
- Christian Janiesch
- Oliver Krancher
- Philip Stahmann
- Jonas Wanner
- Patrick Zschech
Abstract
Decision support systems (DSS) integrating artificial intelligence (AI) hold the potential to significantly enhance organizational decision-making performance and speed in areas such as prognostics in machine maintenance. A key issue for organizations aiming to leverage this potential is to select an appropriate AI-based DSS. In this paper, we develop a delegation perspective to identify decision factors and underlying AI system characteristics that affect the selection of AI-based DSS. Utilizing the analytical hierarchy process method, we derive decision weights for these characteristics and apply them to three archetypes of AI-based DSS designed for prognostics. Additionally, we explore how users’ expertise levels impact their preferences for specific AI system characteristics. The results confirm that Performance is the most important decision factor, followed by Effort and Transparency. In line with these results, we find that the archetypes of prognostics systems using Direct Remaining Useful Life estimation and Similarity-based Matching best fit user preferences. Moreover, we find that novices and experts strongly prefer visual over structural explanations, while users with moderate expertise also value structural explanations to develop their skills further.
Suggested Citation
Kai Heinrich & Christian Janiesch & Oliver Krancher & Philip Stahmann & Jonas Wanner & Patrick Zschech, 2025.
"Decision factors for the selection of AI-based decision support systems—The case of task delegation in prognostics,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-24, July.
Handle:
RePEc:plo:pone00:0328411
DOI: 10.1371/journal.pone.0328411
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328411. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.