Author
Listed:
- Yan Fang
- Qiuqin An
- Xue Jin
- Ying Liu
Abstract
Bundling has emerged as a pivotal marketing strategy for online retailers, offering mutual benefits to both merchants and consumers in the rapidly expanding e-commerce landscape. Among various types of user behavior data, user-generated product ratings serve as a critical indicator of individual preferences and satisfaction levels. This research proposes a novel bundle recommendation framework that leverages rating disparities to capture nuanced user preferences and unmet demands. To address the challenges of data sparsity and heterogeneity, we develop a two-stage recommendation method. In the first stage, we enhance the completion of sparse rating matrices by integrating collaborative filtering with deep singular value decomposition. A modified cosine similarity function is introduced, incorporating a rating correction coefficient and an item popularity coefficient to improve similarity estimation. In the second stage, we exploit insights from low-rated items to model user dissatisfaction and latent demands. A dual-layer graph self-attention network is constructed to fuse heterogeneous data, refine inter-item relational representations, and enhance bundle recommendation accuracy. Extensive experiments conducted on benchmark Amazon datasets demonstrate the effectiveness of our approach, achieving 3–6% relative improvements in NDCG and Recall metrics compared to state-of-the-art baselines. Moreover, user satisfaction with the recommended bundles also increased significantly. These results highlight the value of rating differences in understanding user behavior and validate the efficacy of our two-stage model in improving bundle recommendation performance for online retailers.
Suggested Citation
Yan Fang & Qiuqin An & Xue Jin & Ying Liu, 2025.
"Bundle recommendation methods considering rating data differences for online retailers,"
PLOS ONE, Public Library of Science, vol. 20(9), pages 1-25, September.
Handle:
RePEc:plo:pone00:0328245
DOI: 10.1371/journal.pone.0328245
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328245. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.