Author
Listed:
- Dhirendra Prasad Yadav
- Deepak Kumar
- Anand Singh Jalal
- Bhisham Sharma
- Panos Liatsis
Abstract
Hyperspectral data consists of continuous narrow spectral bands. Due to this, it has less spatial and high spectral information. Convolutional neural networks (CNNs) emerge as a highly contextual information model for remote sensing applications. Unfortunately, CNNs have constraints in their underlying network architecture in regards to the global correlation of spatial and spectral features, making them less reliable for mining and representing the sequential properties of spectral signatures. In this article, limpid size attention network (LSANet) is proposed, which contains 3D and 2D convolution blocks for enhancement of spatial-spectral features of the hyperspectral image (HSI). In addition, limpid attention block (LAB) is designed to provide a global correlation of the spectral and spatial features through LS attention. Furthermore, the computational costs of LS-attention are less compared to the multi-head self-attention (MHSA) of the classical vision transformer (ViT). In the ViT encoder a conditional position encoding (CPE) module is utilized that dynamically generates tokens from the feature maps to capture a richer contextual representation. The LSANet obtained overall accuracy (OA) of 98.78%, 98.67%, 97.52% and 89.45%, respectively, on the Indian Pines (IP), Pavia University (PU), Salina Valley (SV) and Botswana datasets. Our model’s quantitative and qualitative results are considerably better than the classical CNN and transformer-based methods.
Suggested Citation
Dhirendra Prasad Yadav & Deepak Kumar & Anand Singh Jalal & Bhisham Sharma & Panos Liatsis, 2025.
"Leveraging potential of limpid attention transformer with dynamic tokenization for hyperspectral image classification,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-25, August.
Handle:
RePEc:plo:pone00:0328160
DOI: 10.1371/journal.pone.0328160
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328160. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.