Author
Listed:
- Ashrafun Zannat
- Md Saiful Islam
- Md Shahriar Zaman
- Sadman Saif
Abstract
Wood species recognition has recently emerged as a vital field in the realm of forestry and ecological conservation. Early studies in this domain have offered various methods for classifying distinct wood species found worldwide using data collected from a particular region. An image dataset has been developed for wood species classification of Bangladeshi forest. Our aim is to address the gaps by comparing and contrasting our developed sequential Convolutional Neural Network based BdWood model with several deep learning, ensemble technique, Machine learning classification models on specific wood species identification for Bangladeshi forests. Using our own dataset, comprising more than 7119 high-quality captured images representing seven types of wood species of Bangladesh. It is found that DenseNet121 is the clear winner in our thorough evaluation among seven pre-trained models. The highest accuracy of DenseNet121 is achecived 97.09%. In addition, our customized BdWood model, which is adapted to the desired outcome, produced results that are excellent. BdWood model achieves a training accuracy of 99.80%, validation accuracy of 97.93%, an F1-score of 97.94%, and an outstanding ROC-AUC of 99.85%, demonstrating its effectiveness in wood species classification. Gradient-weighted Class Activation Mapping (Grad CAM) is used to interpret the model’s predictions, providing insights into the features contributing to the classification decisions. Finally, to make our research practically applicable, we have also developed an Android application as a tangible outcome of this work.
Suggested Citation
Ashrafun Zannat & Md Saiful Islam & Md Shahriar Zaman & Sadman Saif, 2025.
"Indigenous wood species classification using a multi-stage deep learning with grad-CAM explainability and an ensemble technique for Northern Bangladesh,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-38, July.
Handle:
RePEc:plo:pone00:0328102
DOI: 10.1371/journal.pone.0328102
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.