Author
Abstract
Financial data prediction and risk assessment represent a complex multi-task problem that requires effective handling of time-series data and multi-dimensional features. Traditional models struggle to simultaneously capture temporal dependencies, global information, and intricate nonlinear relationships, resulting in limited prediction accuracy. To address this challenge, we propose LTR-Net, a multi-module deep learning model that combines LSTM, Transformer, and ResNet. LTR-Net effectively processes the multi-dimensional features and dynamic changes in financial data by incorporating a temporal dependency modeling module, a global information capture module, and a deep feature extraction module. Experimental results demonstrate that LTR-Net significantly outperforms existing mainstream models, including LSTM, GRU, Transformer, and DeepAR, across multiple financial datasets. On the Kaggle Financial Distress Prediction Dataset and the Yahoo Finance Stock Market Data, LTR-Net exhibits higher accuracy, stability, and robustness across various metrics such as MSE, RMSE, MAE, and AUC. Ablation experiments further validate the indispensability of each module within LTR-Net, confirming the pivotal roles of the LSTM, Transformer, and ResNet modules in financial data analysis. LTR-Net not only enhances the accuracy of financial data prediction but also exhibits strong generalization capabilities, making it adaptable to data analysis and risk assessment tasks in other domains.
Suggested Citation
Shimiao Liu, 2025.
"LTR-Net: A deep learning-based approach for financial data prediction and risk evaluation in enterprises,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-20, August.
Handle:
RePEc:plo:pone00:0328013
DOI: 10.1371/journal.pone.0328013
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328013. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.