Author
Listed:
- Tianbao Feng
- Jiating Hu
- Mi Xie
- Guodong Shi
- Qi Wang
- Jingyuan Yao
- Xiaoqin Liu
Abstract
Spinal cord injury (SCI) is a debilitating neurological condition that severely impacts motor, sensory, and autonomic functions, leading to significant challenges in patient quality of life and imposing substantial economic burdens on society. PANoptosis is an emerging concept in programmed cell death that combines three key processes: pyroptosis, apoptosis, and necroptosis. Research has demonstrated the significant roles of apoptosis, necroptosis, and pyroptosis in the progression of SCI. As such, targeting PANoptosis-related genes may offer new therapeutic targets and clinically relevant treatment strategies. This study seeks to identify distinct molecular subtypes of SCI and potential drugs for its treatment, based on the mechanisms of PANoptosis. We acquired RNA sequencing data from the Gene Expression Omnibus (GEO) datasets GSE151371 and performed Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) analysis to delineate differential biological functions between SCI patients and healthy controls. We identified a total of 1138 significant differentially expressed genes (DEGs), comprising 431 downregulated and 707 upregulated genes. We intersected DEGs with PANoptosis gene sets and identified 23 common genes. 23 PANoptosis-related genes were subjected to functional enrichment analysis and PANoptosis scores calculation. PANoptosis score in SCI samples was significantly higher than in HC samples. Additionally, a protein-protein interaction (PPI) network was established to identify hub genes, and 8 machine learning algorithms were used to narrowed down hub genes. BMX and CASP5 were consistently identified across all algorithms. Immune cell infiltration analysis revealed significant correlations between BMX and several immune cell types, highlighting its involvement in the inflammatory response after SCI. Through additional ROC curve analysis, we confirmed the promising diagnostic potential of BMX, with an AUC value of 0.987. Moreover, we predicted potential therapeutic agents and key regulatory factors interacting with BMX. We performed single-gene GSEA analysis to explore the biological functions and pathways associated with BMX. Finally, we created a rat model of SCI to experimentally confirm the elevated expression of BMX in the SCI group by quantitative real-time PCR (qRT-PCR), western blot (WB) and immunohistochemistry (IHC). In conclusion, our findings provide valuable insights into the molecular mechanisms underlying SCI, highlighting BMX, a PANoptosis-related gene, as a potential therapeutic target. These results underscore the necessity for future studies to explore these targets in clinical applications.
Suggested Citation
Tianbao Feng & Jiating Hu & Mi Xie & Guodong Shi & Qi Wang & Jingyuan Yao & Xiaoqin Liu, 2025.
"Identification and experimental validation of BMX as a crucial PANoptosis‑related gene for immune response in Spinal Cord Injury,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-19, July.
Handle:
RePEc:plo:pone00:0328002
DOI: 10.1371/journal.pone.0328002
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0328002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.