Author
Listed:
- Gursimran Singh
- Aviral Chharia
- Rahul Upadhyay
- Vinay Kumar
- Luca Longo
Abstract
Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) have emerged as a transformative technology with applications spanning robotics, virtual reality, medicine, and rehabilitation. However, existing BCI frameworks face several limitations, including a lack of stage-wise flexibility essential for experimental research, steep learning curves for researchers without programming expertise, elevated costs due to reliance on proprietary software, and a lack of all-inclusive features leading to the use of multiple external tools affecting research outcomes. To address these challenges, we present PyNoetic, a modular BCI framework designed to cater to the diverse needs of BCI research. PyNoetic is one of the very few frameworks in Python that encompasses the entire BCI design pipeline, from stimulus presentation and data acquisition to channel selection, filtering, feature extraction, artifact removal, and finally simulation and visualization. Notably, PyNoetic introduces an intuitive and end-to-end GUI coupled with a unique pick-and-place configurable flowchart for no-code BCI design, making it accessible to researchers with minimal programming experience. For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. PyNoetic also includes a rich array of analytical tools such as machine learning models, brain-connectivity indices, systematic testing functionalities via simulation, and evaluation methods of novel paradigms. PyNoetic’s strengths lie in its versatility for both offline and real-time BCI development, which streamlines the design process, allowing researchers to focus on more intricate aspects of BCI development and thus accelerate their research endeavors.
Suggested Citation
Gursimran Singh & Aviral Chharia & Rahul Upadhyay & Vinay Kumar & Luca Longo, 2025.
"PyNoetic: A modular python framework for no-code development of EEG brain-computer interfaces,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-28, August.
Handle:
RePEc:plo:pone00:0327791
DOI: 10.1371/journal.pone.0327791
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327791. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.