Author
Listed:
- Xiaochuan Wang
- Bo Zhang
- Fei Wang
- Tao Bao
- Zhiqing Lu
- Jiawei Bao
Abstract
Traditional uncertainty sampling methods in active learning often neglect category information, leading to imbalanced sample selection in multi-class computer vision tasks. Our approach integrates category information with uncertainty sampling through a novel active learning framework to address this limitation. Our method employs a pre-trained VGG16 architecture and cosine similarity metrics to efficiently extract category features without requiring additional model training. The framework combines these features with traditional uncertainty measures to ensure balanced sampling across classes while maintaining computational efficiency. Extensive experiments across both object detection and image classification tasks validate our method’s effectiveness. For object detection, our approach achieves competitive mAP scores while ensuring balanced category representation. For image classification, our method achieves accuracy comparable to state-of-the-art approaches while reducing computational overhead by up to 80%. The results validate our approach’s ability to balance sampling efficiency with dataset representativeness across different computer vision tasks. This work offers a practical, efficient solution for large-scale data annotation in domains with limited labeled data and diverse class distributions.
Suggested Citation
Xiaochuan Wang & Bo Zhang & Fei Wang & Tao Bao & Zhiqing Lu & Jiawei Bao, 2025.
"Enhanced uncertainty sampling with category information for improved active learning,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-15, July.
Handle:
RePEc:plo:pone00:0327694
DOI: 10.1371/journal.pone.0327694
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327694. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.