Author
Listed:
- Haytham A Ali
- Essam A Rashed
- Hiroyuki Kudo
Abstract
This paper addresses the image reconstruction problem in discrete tomography, particularly under challenging imaging conditions such as sparse-view and limited-angle geometries commonly encountered in computed tomography (CT). These conditions often result in low-quality reconstructions due to insufficient projection data and incomplete angular coverage. To overcome these limitations, we propose a novel reconstruction framework that integrates compressed sensing (CS) with a parametric level set (PLS) method tailored for discrete images. The proposed approach leverages prior knowledge of discrete gray-level values and employs a parametric level set function to represent boundaries in both binary and multi-gray-level images. Unlike previous methods, our PLS is constructed using a dictionary of basis functions composed of single-scale or multiscale Gaussian functions. Reconstruction is formulated as 𝚤1-norm minimization of Gaussian coefficients, promoting sparsity. We assess the method’s robustness by introducing varying levels of Gaussian noise into the projection data under both sparse-view and limited-angle conditions. Quantitative evaluations using PSNR, SSIM, and Dice coefficients demonstrate that the proposed method preserves boundary sharpness and accurately reconstructs discrete intensity levels, even in highly undersampled and noisy scenarios. Simulations and experiments on both synthetic and real CT data confirm that the proposed approach consistently outperforms conventional methods in terms of reconstruction quality, boundary accuracy, and noise robustness.
Suggested Citation
Haytham A Ali & Essam A Rashed & Hiroyuki Kudo, 2025.
"Compressed sensing-based image reconstruction for discrete tomography with sparse view and limited angle geometries,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-26, July.
Handle:
RePEc:plo:pone00:0327666
DOI: 10.1371/journal.pone.0327666
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327666. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.