IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0327646.html
   My bibliography  Save this article

A bearing fault diagnosis method based on hybrid artificial intelligence models

Author

Listed:
  • Lijie Sun
  • Xin Tao
  • Yanping Lu

Abstract

The working state of rolling bearing severely affects the performance of industrial equipment. Addressing the issue of that the difficulty of incipient weak signals feature extraction influences the rolling bearing diagnosis accuracy, an efficient bearing fault diagnostic technique, a proposition is forwarded for hybrid artificial intelligence models, which integrates Improved Harris Hawks Optimization (IHHO) into the optimization of Deep Belief Networks and Extreme Learning Machines (DBN-ELM). The process employs Maximum Second-order Cyclostationary Blind Deconvolution (CYCBD) to filter out noise from the vibration signals emitted by bearings; secondly, considering the issue with the conventional Harris Hawks Optimization (HHO) algorithm which tends to prematurely converge to local optima, the differential evolution mutation operator is introduced and the escape energy factor is improved from linear to nonlinear in IHHO; then, a double-layer network model based on DBN-ELM is proposed, to avoid the number of hidden layer nodes of DBN from human experience interference, and IHHO is used to optimize DBN structure, which is denoted as IHHO-DBN-ELM method; with the optimal structure is obtained by using a combined IHHO optimized DBN and ELM; in conclusion, the proposed IHHO-DBN-ELM approach is applied to the bearing fault detection using the Western Reserve University’s bearing fault dataset. The outcome of the experiments demonstrates that IHHO-DBN-ELM technique successfully extracts fault characteristics from the raw time-domain signals, thereby offering enhanced diagnostic accuracy and superior generalization capabilities.

Suggested Citation

  • Lijie Sun & Xin Tao & Yanping Lu, 2025. "A bearing fault diagnosis method based on hybrid artificial intelligence models," PLOS ONE, Public Library of Science, vol. 20(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0327646
    DOI: 10.1371/journal.pone.0327646
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327646
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0327646&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0327646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.