Author
Listed:
- Siddiqui Muhammad Yasir
- Hyun Kim
Abstract
Spiking neural networks (SNNs) are emerging as a promising evolution in neural network paradigms, offering an alternative to conventional convolutional neural networks (CNNs). One of the most effective methods for SNN development is the CNN-to-SNN conversion process. However, existing conversion techniques are hindered by long temporal durations or inference latencies, which negatively impact the accuracy of the converted networks. Additionally, the application of SNNs in object detection tasks remains largely under-explored. In this study, we propose a novel approach utilizing a bistable integrate-and-fire (BIF) neuron model integrated with a single-shot multibox detector (SSD) as the detection head. Leveraging the proposed BIF neuron framework, we convert the widely used ResNet architecture into an SNN. We validate the effectiveness of our approach through object detection tasks on the MS-COCO and Automotive GEN1 datasets. Experimental results show that our conversion technique facilitates object detection with reduced temporal steps and significant enhancements in mean average precision (mAP), achieving mAP@0.5 scores of 0.476 and 0.591 for the MS-COCO and Automotive GEN1 datasets, respectively. This research marks the first application of BIF neurons to object detection, presenting a novel advancement in the field.
Suggested Citation
Siddiqui Muhammad Yasir & Hyun Kim, 2025.
"BN-SNN: Spiking neural networks with bistable neurons for object detection,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-24, July.
Handle:
RePEc:plo:pone00:0327513
DOI: 10.1371/journal.pone.0327513
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327513. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.