Author
Listed:
- Tian Ma
- Yijie Zeng
- Wenda Pei
- Chao Li
- Yuancheng Li
Abstract
A multi-layer feature optimization Transformer-based tooth position prediction method is proposed to address the problems of difficult access to high-precision medical data and the difficulty of capturing and representing hierarchical features and spatial relationships among teeth by current methods. First, a geometric adaptive optimization strategy and a physiological adaptive reconstruction strategy are designed for real-time adaptation to the complexity of different clinical environments and enhanced pose invariance by integrating the physiological characteristics and anatomical structure of teeth. Then, a hierarchical feature tooth position prediction network was designed to solve the problems of weak ability of MLPs to process high-dimensional data and low accuracy of prediction transformation matrix by extracting hierarchical geometric features of teeth. Finally, a jointly supervised loss function is constructed, which can simultaneously capture the intrinsic differences, spatial relationships and uncertainties of the tooth position prediction disorder distribution, and can effectively supervise the tooth spatial structure relationships and prevent tooth collisions and misalignments. The experimental results show that the accuracy of the proposed method is improved by 2.87% and the rotation and translation errors are reduced by 28.28% and 37.53%, respectively, compared with the current method.
Suggested Citation
Tian Ma & Yijie Zeng & Wenda Pei & Chao Li & Yuancheng Li, 2025.
"Tooth position prediction method based on adaptive geometry optimization,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-19, July.
Handle:
RePEc:plo:pone00:0327498
DOI: 10.1371/journal.pone.0327498
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327498. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.