Author
Listed:
- Hao Li
- Zhuqi Li
- Dongkui Chen
- Wangyu Wu
- Xuanlong He
- Hongbo Mu
Abstract
Oak seeds are highly susceptible to pest infestations due to their elevated starch content, which significantly impairs germination and subsequent growth. To address this challenge, we developed a high-resolution imaging system and proposed an improved YOLO-based model named Oak-YOLO for efficient and accurate defect detection in oak seeds. The proposed model enhances the YOLOv8 architecture by incorporating EfficientViT as the backbone to improve global feature extraction, and integrates a Ghost-DynamicConv detection head to enhance the representation of small and irregular defects such as insect holes and cracks. Additionally, the WIoUv3 loss function is introduced to optimize bounding box regression for complex target shapes and overlapping instances.Extensive experiments were conducted on both single-object and multi-object datasets. Oak-YOLO achieved a mAP50 of 94.5%, an F1-score of 95.3%, and a precision of 94.% on the oak-intensive dataset, with an inference speed of 132.2 FPS. Cross-device validation using mobile-captured images further demonstrated the model’s robustness, achieving mAP50 scores of 94.7% and 93.8% on different smartphone test sets. Comparative evaluations show that Oak-YOLO outperforms existing YOLO models, including YOLOv9 to YOLOv12, by delivering a favorable trade-off between detection accuracy and computational efficiency. These results highlight the potential of Oak-YOLO as a practical solution for real-time seed quality inspection in forestry applications.
Suggested Citation
Hao Li & Zhuqi Li & Dongkui Chen & Wangyu Wu & Xuanlong He & Hongbo Mu, 2025.
"Oak-YOLO: A high-performance detection model for automated Oak seed defect identification,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-20, August.
Handle:
RePEc:plo:pone00:0327371
DOI: 10.1371/journal.pone.0327371
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327371. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.