Author
Listed:
- Syed Mohsin Bokhari
- Sarmad Sohaib
- Muhammad Shafi
Abstract
This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods—such as CNN, ResNet, and attention-based RNNs—indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics.
Suggested Citation
Syed Mohsin Bokhari & Sarmad Sohaib & Muhammad Shafi, 2025.
"Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-20, July.
Handle:
RePEc:plo:pone00:0327108
DOI: 10.1371/journal.pone.0327108
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.