Author
Listed:
- Nadim Rana
- Yahaya Coulibaly
- Ayman Noor
- Talal H Noor
- Md Imran Alam
- Zeba Khan
- Ali Tahir
- Mohammad Zubair Khan
Abstract
Thoracic diseases, including pneumonia, tuberculosis, lung cancer, and others, pose significant health risks and require timely and accurate diagnosis to ensure proper treatment. Thus, in this research, a model for thorax disease classification using Chest X-rays is proposed by considering deep learning model. The input is pre-processed by resizing, normalizing pixel values, and applying data augmentation to address the issue of imbalanced datasets and improve model generalization. Significant features are extracted from the images using an Enhanced Auto-Encoder (EnAE) model, which combines a stacked auto-encoder architecture with an attention module to enhance feature representation and classification accuracy. To further improve feature selection, we utilize the Chaotic Whale Optimization (ChWO) Algorithm, which optimally selects the most relevant attributes from the extracted features. Finally, the disease classification is performed using the novel Improved Swin Transformer (IMSTrans) model, which is designed to efficiently process high-dimensional medical image data and achieve superior classification performance. The proposed EnAE + ChWO+IMSTrans model for thorax disease classification was evaluated using extensive Chest X-ray datasets and the Lung Disease Dataset. The proposed method demonstrates enhanced Accuracy, Precision, Recall, F-Score, MCC and MAE of 0.964, 0.977, 0.9845, 0.964, 0.9647, and 0.184 respectively indicating the reliable and efficient solution for thorax disease classification.
Suggested Citation
Nadim Rana & Yahaya Coulibaly & Ayman Noor & Talal H Noor & Md Imran Alam & Zeba Khan & Ali Tahir & Mohammad Zubair Khan, 2025.
"Improved swin transformer-based thorax disease classification with optimal feature selection using chest X-ray,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-25, June.
Handle:
RePEc:plo:pone00:0327099
DOI: 10.1371/journal.pone.0327099
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327099. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.