Author
Listed:
- Meshari Alazmi
- Nasir Ayub
Abstract
Predicting student performance is crucial for providing personalized support and enhancing academic performance. Advanced machine-learning approaches are being used to understand student performance variables as educational data grows. A big dataset from several Chinese institutions and high schools is used to develop a credible student performance prediction technique. Moreover, the dataset includes 80 features and 200,000 records, and consequently, it represents one of the most extensive data collections available for educational research. Initially, data is passed through preprocessing to address outliers and missing values. In addition, we developed a novel hybrid feature selection model that combined correlation filtering with mutual information, Cross-Validation (CV) along with Recursive Feature Eliminatio (RFE) (R, and stability selection to identify the most impactful features. Moreover, This study develops the proposed EffiXNet, a more refined version of EfficientNet augmented with self-attention mechanisms, dynamic convolutions, improved normalization methods, and Sparrow Search Optimization Algorithm for hyperparameter optimization. The developed model was tested using an 80/20 train-test split, where 160,000 records were used for training and 40,000 for testing. The results reported, including accuracy, precision, recall, and F1-score, are based on the full test dataset. However, for better visualization, the confusion matrices display only a representative subset of test results. Furthermore, the EffiXNet value of AUC amounting to 0.99, a 25% reduction of logarithmic loss relative to the baseline models, precision of 97.8%, F1-score of 98.1%, and reliable optimization of memory usage. Significantly, the developed model showed a consistently high-performance level demonstrated by various metrics, which indicates that it is proficient in capturing intricate data patterns. The key insights the current research provides are the necessity of early intervention and directed training support in the educational domain. The EffiXNet framework offers a robust, scalable, and efficient solution for predicting student performance, with potential applications in academic institutions worldwide.
Suggested Citation
Meshari Alazmi & Nasir Ayub, 2025.
"Enhancing student success prediction in higher education with swarm optimized enhanced efficientNet attention mechanism,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-29, June.
Handle:
RePEc:plo:pone00:0326966
DOI: 10.1371/journal.pone.0326966
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326966. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.