Author
Listed:
- Xiaofeng Liu
- Mingliang Li
- Zhi Geng
- Shuhong Zhu
- Wenjie Li
- Bin Liang
Abstract
This paper aims to address the problems of aerial orientation control and safety in sudden extreme working conditions during the integral intelligent lifting of large-span heavy steel box girder. Based on the project of Xiaotun Bridge of Fuyi Expressway, a new integral lifting system and control method were proposed. To prevent extreme conditions during the lifting process, the mechanical properties of steel box girders in both synchronous and asynchronous integral lifting states were investigated using the finite element method. Moreover, the mechanical properties of the steel box girders during the lifting process were analyzed through on-site monitoring. The results show that an alignment device has been added to the existing synchronous hydraulic lifting system, which achieves precise control of the aerial orientation and stress of each component of the steel box girder through informal lifting, micromotion lifting and other methods. In the synchronous lifting condition, the failure of the lifting point will cause the redistribution of internal forces in the lifting sling, thereby endangering the lifting lugs, but the stress and deformation of the steel box girder change relatively little. In the asynchronized lifting condition, the use of double lifting points may potentially result in overturning and torsion of the girder. However, under the asynchronous lifting within the displacement error limits, the overall mechanical performance of the steel box girder meets the codes. The on-site monitoring results correlate closely with the simulation results for the normal lifting conditions of the steel box girder. The maximum stress and vertical displacement of the steel box girder are approximately 74 MPa and 70 mm, respectively, indicating that the overall girder structure is safe and reliable throughout the entire lifting process.
Suggested Citation
Xiaofeng Liu & Mingliang Li & Zhi Geng & Shuhong Zhu & Wenjie Li & Bin Liang, 2025.
"Research on mechanical characteristics and key technology of integral intelligent lifting construction of large-span heavy steel box girder,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-21, June.
Handle:
RePEc:plo:pone00:0326918
DOI: 10.1371/journal.pone.0326918
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326918. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.