Author
Abstract
Objective: Accurate prediction of glioblastoma (GBM) progression is essential for improving therapeutic interventions and outcomes. This study aimed to develop and validate an integrated clinical-radiomics model to predict overall survival (OS) and evaluate the risk of disease progression in patients with isocitrate dehydrogenase-wildtype GBM (IDH-wildtype GBM). Materials and Methods: The data of 423 IDH-wildtype GBM patients were retrospectively analyzed. Radiomic features were extracted from preoperatively acquired MR images. Least absolute shrinkage and selection operator-Cox proportional hazards (LASSO-Cox) regression was used to identify radiomic features significantly associated with OS and calculate a risk score and construct a radiomic signature for each patient. Kaplan‒Meier survival analysis and the log-rank test were used to compare survival between the high-risk and low-risk groups. A clinical‒radiomic model and a nomogram were developed on the basis of the results of multivariable Cox proportional hazards regression and were evaluated with the concordance index (C-index). Results: Radiomics models were developed on the basis of feature extracted from the three sub-regions individually, and a multiregional radiomics model was established by aggregating 16 features selected from these subregions. Kaplan-Meier survival analysis indicated that the high-risk group exhibited significantly worse outcomes than the low-risk group did (p
Suggested Citation
Han Wang, 2025.
"Multimodal MRI radiomics based on habitat subregions of the tumor microenvironment for predicting risk stratification in glioblastoma,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-18, June.
Handle:
RePEc:plo:pone00:0326361
DOI: 10.1371/journal.pone.0326361
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326361. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.