Author
Listed:
- Soheil Mohammadi
- Ali Jahanshahi
- Mohammad Shahrabi Farahani
- Mohammad Amin Salehi
- Negin Frounchi
- Ali Guermazi
Abstract
Aim of the study: The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. Materials and methods: A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies’ reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance. Results: Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively. Conclusion: The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
Suggested Citation
Soheil Mohammadi & Ali Jahanshahi & Mohammad Shahrabi Farahani & Mohammad Amin Salehi & Negin Frounchi & Ali Guermazi, 2025.
"Diagnosis of knee meniscal injuries using artificial intelligence: A systematic review and meta-analysis of diagnostic performance,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-18, June.
Handle:
RePEc:plo:pone00:0326339
DOI: 10.1371/journal.pone.0326339
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.