IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0326232.html
   My bibliography  Save this article

PoseNet++: A multi-scale and optimized feature extraction network for high-precision human pose estimation

Author

Listed:
  • Chao Lv
  • Geyao Ma

Abstract

Human pose estimation (HPE) has made significant progress with deep learning; however, it still faces challenges in handling occlusions, complex poses, and complex multi-person scenarios. To address these issues, we propose PoseNet++, a novel approach based on a 3-stacked hourglass architecture, incorporating three key innovations: the multi-scale spatial pyramid attention hourglass module (MSPAHM), coordinate-channel prior convolutional attention (C-CPCA), and the PinSK Bottleneck Residual Module (PBRM). MSPAHM enhances long-range channel dependencies, enabling the model to better capture structural relationships between limb joints, particularly under occlusion. C-CPCA combines coordinate attention (CA) and channel prior convolutional attention (CPCA) to prioritize keypoints’ regions and reduce the confusion in complex multi-person scenarios. The PBRM improves pose estimation accuracy by optimizing the receptive field and convolutional kernel selection, thus enhancing the network’s feature extraction capabilities in multi-scale and complex poses. On the MPII validation set, PoseNet++ improves the PCKh score by 3.3% relative to the baseline 3-stacked hourglass network, while reducing the number of model parameters and the number of floating-point operations by 60.3% and 53.1%, respectively. Compared with other mainstream human pose estimation models in recent years, PoseNet++ achieves the state-of-the-art performance on the MPII, LSP, COCO and CrowdPose datasets. At the same time, the model complexity of PoseNet++ is much lower than that of methods with similar accuracy.

Suggested Citation

  • Chao Lv & Geyao Ma, 2025. "PoseNet++: A multi-scale and optimized feature extraction network for high-precision human pose estimation," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-28, June.
  • Handle: RePEc:plo:pone00:0326232
    DOI: 10.1371/journal.pone.0326232
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326232
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0326232&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0326232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.