IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0326212.html
   My bibliography  Save this article

Integrated multi-omics analysis and predictive modeling of heart failure using sepsis-related gene signature

Author

Listed:
  • Yiping Lang
  • Tianyu Liang
  • Fei Li

Abstract

Background: Heart failure (HF) is characterized by complex molecular alterations, and recent studies suggest a potential role for sepsis-related genes in cardiovascular dysfunction. This study aimed to develop a predictive model for HF based on sepsis-related gene signatures. Methods: Three sepsis-related datasets (GSE65682, GSE54514, and GSE95233) were analyzed to identify differentially expressed genes (DEGs) following batch effect correction using the ComBat algorithm. With the use of elastic net regularization and the glmnet package in R, Lasso Cox regression was employed to screen out gene signatures. A predictive model was developed based on the expression of each gene signature and the co-efficient values. In addition, the predictive model was validated on independent HF datasets (GSE57345, GSE141910, and GSE5406). Model performance was assessed through receiver operating characteristic (ROC) analysis and AUC values of each gene signature, and immune infiltration was evaluated using CIBERSORT, IPS, and xCell. Sepsis models of C57BL/6 mice were established by cecal ligation and puncture (CLP). Results: We identified 340 up-regulated and 333 down-regulated sepsis-related genes. The predictive model, incorporating six key genes, demonstrated superior performance compared to individual genes across both training and validation datasets with the AUC value of the risk score above 0.9, significantly higher than that of a single gene. Immune infiltration profiles differed significantly between HF patients and controls, with more pronounced alterations observed at higher risk score levels. Finally, the expression of six key genes in sepsis models was confirmed to be consistent with our prediction. Conclusion: The model constructed through sepsis-related characteristic genes provides a highly advantageous method for predicting HF, and the characteristic genes we have screened may be potential biomarkers for predicting HF. This model has potential application value in early diagnosis and risk stratification, which can help improve the clinical management of heart failure and provide new ideas for preventing HF.

Suggested Citation

  • Yiping Lang & Tianyu Liang & Fei Li, 2025. "Integrated multi-omics analysis and predictive modeling of heart failure using sepsis-related gene signature," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-18, June.
  • Handle: RePEc:plo:pone00:0326212
    DOI: 10.1371/journal.pone.0326212
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326212
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0326212&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0326212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.