Author
Abstract
To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. The model characterizes room functions and spatial locations through binary coding, and uses dynamic fitness function and backtracking strategy to improve space utilization and functional fitness. In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. Quantitatively, it is found that the model achieves 94.76% in terms of motion optimization rate, the highest space utilization rate is 96.6%, functional fitness is 9.4, and user satisfaction is close to 94.21%. The optimization results show that the proposed method has significant advantages in improving space utilization and meeting personalized design needs. However, despite the good optimization results, the method still faces the problem of improving the optimization ability under high-dimensional space and complex constraints. This study provides an efficient solution for intelligent building layout design and has certain practical value.
Suggested Citation
Ling Zhao & Baijun Li, 2025.
"Optimization design of internal space layout of three-bedroom residential apartment based on IGA and DE algorithm,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-24, July.
Handle:
RePEc:plo:pone00:0326153
DOI: 10.1371/journal.pone.0326153
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.