Author
Listed:
- Neero Gumsar Sorum
- Martina Gumsar Sorum
Abstract
Distracted Driving (DD) is one of the global causes of high mortality and fatality in road traffic accidents. The increase in the number of distracted driving accidents (DDAs) is one of the concerns among transportation communities. The present study aimed to examine the individual and interacted effects of the influential factors on the injury severity of the DDAs using the Binary Logistic Regression (BLR) method, and at the same, to select the best machine learning (ML) model in predicting the injury severity of the DDA. The selection of the best ML model was based on the optimum combination of accuracy, F1 score, and area under curve metrics. Ten years of DDA data (2011−2020) provided by the police department of Imphal, India, was used in the present study. The BLR model-without-interaction results revealed that out of twenty categorical variables, nine categorical variables (below 18, 18−24, 25−40, above 40 years age group, two-wheeler, heavy motor vehicle, 12AM-6AM, 6PM-12AM, and hit-object collision) were statistically significant to the injury severity of the DDAs. In interaction model results, there were 11, 1, and 1 significant combinations among categorical variables in two-way, three-way, and four-way interaction models, respectively. The ML model results showed that overall, the XGBoost model was reported as the best-performing model in the first hyperparameter set, and the Single Layer Perceptron model in the second set. These results may be useful for transportation policymakers while implementing any countermeasures to improve road safety in hilly areas.
Suggested Citation
Neero Gumsar Sorum & Martina Gumsar Sorum, 2025.
"Modeling of injury severity of distracted driving accident using statistical and machine learning models,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-24, June.
Handle:
RePEc:plo:pone00:0326113
DOI: 10.1371/journal.pone.0326113
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.