IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0326035.html
   My bibliography  Save this article

Wind energy resource assessment based on joint wolf pack intelligent optimization algorithm

Author

Listed:
  • Jiayuan Wang

Abstract

Wind energy is a clean and renewable energy source with great potential for development, but the intermittent and stochastic characteristics of wind speed have brought great challenges to the effective development and utilisation of wind energy resources, resulting in high development costs. Therefore, how to accurately assess the wind energy resources and effectively predict the wind speed has become a key issue to be solved in the current wind energy field. In view of this, the study proposes the Weibull model to model the wind speed data, and then introduces the wolf pack intelligent optimisation algorithm and improves it through the pollination mechanism to improve the accuracy of wind energy resource assessment. Secondly, considering the complexity and diversity of wind speed data characteristics, data decomposition technique, autoregressive moving average (ARIMA) model and cuckoo search algorithm are used to achieve data preprocessing, serial data modelling and hybrid prediction. The experimental results show that the Weibull model has good fitting accuracy for wind speed data, with residual sum of squares, RMSE, and average coefficient of determination of 0.05, 0.014, and 0.96, respectively, accurately reflecting the statistical characteristics of wind speed data. The wind speed prediction performance of the hybrid prediction model is good, with a maximum deviation of no more than 3% from the true value, which is significantly better than the compared VMD-ISOA-KELM model and CNN-BLSTM model, and its prediction error is relatively small. The hybrid prediction model has a smaller relative error value compared to a single algorithm, with a maximum value of less than 0.2. It has better prediction performance than the combination model, with a coefficient of determination approaching 1.0, a fitting accuracy of 0.994, a mean square error of 0.1947, a root mean square error of 0.3847, and an average absolute percentage error of 15.23%. And the research method can effectively evaluate the status of wind energy resources, with low time complexity at different data scales, taking no more than 5 seconds, and improving operational efficiency. This research method can provide strong technical support and reference basis for the development and utilisation of wind energy resources, and help to promote the sustainable development of wind energy industry.

Suggested Citation

  • Jiayuan Wang, 2025. "Wind energy resource assessment based on joint wolf pack intelligent optimization algorithm," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-26, June.
  • Handle: RePEc:plo:pone00:0326035
    DOI: 10.1371/journal.pone.0326035
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326035
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0326035&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0326035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.