Author
Listed:
- Samuel B Lassers
- Shazfa S Khatri
- Ruiyi Chen
- Yash S Vakilna
- William C Tang
- Gregory J Brewer
Abstract
Each sub-region of the hippocampus plays a critical computational role in the formation of episodic learning and memory, but studies have yet to show and interpret the individual spiking dynamics of each region and how that information is passed between each subregion. This is in part due to the difficulty in accessing individual communicating axons. Here, we created a novel microfluidic device that facilitates network growth of four separated hippocampal subregions over a micro-electrode array. This device enabled monitoring single axons over two electrodes so direction of spike propagation in interregional communication could be ascertained. In this in vitro hippocampal study, we compared spiking dynamics across two novel four-compartment device architectures: one with four sets of axon tunnels between subregions that excluded the perforant pathway from EC-CA3, and one with five sets of axon tunnels that included the EC-CA3 connection. We found 30–90% faster feed-forward firing rates (shorter interspike intervals) in axons in the five-tunnel model with 35–75% slower bursting dynamics (longer interburst intervals) compared to the four-tunnel model. The CA3-CA1 and CA1-EC axons had more spikes in bursts in the five-tunnel architecture than the four-tunnel counterpart suggesting more structured information transfer. Feedback firing rates were similar between configurations. The faster feed-forward inter-regional spiking in the more natural five-tunnel than the four-tunnel configuration suggests tighter control of spiking and possibly more precise communication between subregions.
Suggested Citation
Samuel B Lassers & Shazfa S Khatri & Ruiyi Chen & Yash S Vakilna & William C Tang & Gregory J Brewer, 2025.
"Impact of the entorhinal feed-forward connection to the CA3 on hippocampal coding,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-18, July.
Handle:
RePEc:plo:pone00:0326032
DOI: 10.1371/journal.pone.0326032
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.