Author
Listed:
- Yaxin Zhang
- Lixu Deng
- Guodong Zhang
- Shuyuan Duan
- Jianfei Yang
Abstract
Rock deterioration under uniaxial compression is significantly influenced by changes in meso-structure, which plays a key role in determining the mechanical behavior and stability of rock materials. Understanding how different loading stresses affect the evolution of meso-structure is crucial for assessing rock stability in engineering applications, such as tunneling and landslide prevention. This study investigates the damage mechanisms and meso-structural evolution of sandstone subjected to uniaxial compression at different loading stresses (0, 5, 15, 30, and 40 MPa). Utilizing Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM) and quantitative statistical analysis (e.g., Single-factor analysis of variance (ANOVA), Pearson correlation coefficients), the study analyzes how different stress levels influence the internal structural changes within the sandstone. The results revel that low loading stresses (5 and 15 MPa) primarily induce microdefect compaction and limited intergranular crack propagation, causing notable changes in failure strain without significant structural damage. In contrast, higher loading stresses (30 and 40 MPa) induce the formation of transgranular cracks, drastically reducing both failure strength and overall structural integrity. Meso-mechanical analysis identifies mineral rotation and crack propagation as critical factors driving these structural transformations. These findings demonstrate that rock deterioration is stress-dependent, with distinct characteristics at low versus high loading conditions. This research enhances the understanding of the underlying mechanisms of rock deterioration, providing valuable insights into rock stability evaluation. The findings are essential for predicting and mitigating geological hazards, offering critical implications for engineering practices aimed at enhancing rock stability and preventing disasters.
Suggested Citation
Yaxin Zhang & Lixu Deng & Guodong Zhang & Shuyuan Duan & Jianfei Yang, 2025.
"Meso-structural evolution of sandstone under uniaxial loading: A study on microdefect compaction and transgranular crack formation mechanisms,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-24, June.
Handle:
RePEc:plo:pone00:0325318
DOI: 10.1371/journal.pone.0325318
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0325318. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.