IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0325058.html
   My bibliography  Save this article

A novel spectral transformation technique based on special functions for improved chest X-ray image classification

Author

Listed:
  • Abeer Aljohani

Abstract

Chest X-ray image classification plays an important role in medical diagnostics. Machine learning algorithms enhanced the performance of these classification algorithms by introducing advance techniques. These classification algorithms often requires conversion of a medical data to another space in which the original data is reduced to important values or moments. We developed a mechanism which converts a given medical image to a spectral space which have a base set composed of special functions. In this study, we propose a chest X-ray image classification method based on spectral coefficients. The spectral coefficients are based on an orthogonal system of Legendre type smooth polynomials. We developed the mathematical theory to calculate spectral moment in Legendre polynomails space and use these moments to train traditional classifier like SVM and random forest for a classification task. The procedure is applied to a latest data set of X-Ray images. The data set is composed of X-Ray images of three different classes of patients, normal, Covid infected and pneumonia. The moments designed in this study, when used in SVM or random forest improves its ability to classify a given X-Ray image at a high accuracy. A parametric study of the proposed approach is presented. The performance of these spectral moments is checked in Support vector machine and Random forest algorithm. The efficiency and accuracy of the proposed method is presented in details. All our simulation is performed in computation softwares, Matlab and Python. The image pre processing and spectral moments generation is performed in Matlab and the implementation of the classifiers is performed with python. It is observed that the proposed approach works well and provides satisfactory results (0.975 accuracy), however further studies are required to establish a more accurate and fast version of this approach.

Suggested Citation

  • Abeer Aljohani, 2025. "A novel spectral transformation technique based on special functions for improved chest X-ray image classification," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-24, June.
  • Handle: RePEc:plo:pone00:0325058
    DOI: 10.1371/journal.pone.0325058
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325058
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0325058&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0325058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0325058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.