IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0324916.html
   My bibliography  Save this article

Deep learning-enhanced signal detection for communication systems

Author

Listed:
  • Yang Liu
  • Peng Liu
  • Yu Shi
  • Xue Hao

Abstract

Traditional communication signal detection heavily relies on manually designed features, making it difficult to fully characterize the essential characteristics of the signal, resulting in limited detection accuracy. Based on this, the study innovatively combines Multiple Input Multiple Output (MIMO) with orthogonal frequency division multiplexing technology to construct a data-driven detection system. The system adopts a Multi-DNN method with a dual-DNN cascade structure and mixed activation function design to optimize the channel estimation and signal detection coordination process of the MIMO part. At the same time, a DCNet decoder based on a convolutional neural network batch normalization mechanism is designed to suppress inter-subcarrier interference in OFDM systems effectively. The results showed that on the simulation training set, the accuracy of the research model was 93.8%, the symbol error rate was 17.6%, the throughput was 81.3%, and the modulation error rate was 0.004%. On the simulation test set, its accuracy, symbol error rate, throughput, and modulation error rate were 90.7%, 18.1%, 81.2%, and 0.006%. In both 2.4 GHz and 5 GHz WiFi signals, the signal detection accuracy of the research model reached 91.5% and 91.6%, with false detection rates of 1.9% and 1.5%, and missed detection rates of 1.6% and 4.2%. In resource consumption assessment, the detection speed of this model reached 120 signals/s, with an average latency of 50 ms. The model loading time was only 2.4 s, and the CPU usage was as low as 25%, with moderate memory usage. Overall, the research model has achieved significant results in improving detection accuracy, optimizing real-time performance, and reducing resource consumption. It has broad application prospects in the field of communication signal detection.

Suggested Citation

  • Yang Liu & Peng Liu & Yu Shi & Xue Hao, 2025. "Deep learning-enhanced signal detection for communication systems," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0324916
    DOI: 10.1371/journal.pone.0324916
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324916
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0324916&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0324916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.