IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0324752.html
   My bibliography  Save this article

KDTMD: Knowledge distillation for transportation mode detection based on KAN

Author

Listed:
  • Rui Li
  • Xueyi Song
  • Yongliang Xie

Abstract

With the progress in sensor technology and the spread of mobile devices, transportation mode detection (TMD) is gaining importance for health and urban traffic improvements. As mobile devices become more lightweight, they require more efficient, low-power models to handle limited resources effectively. Despite extensive research on TMD, challenges remain in capturing non-stationary temporal dynamics and nonlinear fitting capabilities. Additionally, many existing models exhibit high space complexity, making lightweight deployment on devices with limited computing and memory resources difficult. To address these issues, we propose a novel deep TMD model based on discrete wavelet transform (DWT) and knowledge distillation (KD), called KDTMD. This model consists of two main modules, i.e., DWT and KD. For the DWT module, since non-stationary time variations and event distribution shifts complicate sensor time series analysis, we use the DWT modules to disentangle the sensor time series into two parts: a low-frequency part that indicates the trend and a high-frequency part that captures events. The separated trend data is less influenced by event distribution shifts, effectively mitigating the impact of non-stationary time variations. For the KD module, it includes the teacher model and student model. Specifically, for teacher model, to address the nonlinearities and interpretability, we incorporate T-KAN, which is composed of multiple layers of linear KAN that employ learnable B-spline functions to achieve a richer feature representation with fewer parameters. For student model, we develop the S-CNN, which is trained efficiently by T-KAN through KD. The KDTMD model achieves 97.27% accuracy and 97.29% F1-Score on the SHL dataset, and 96.56% accuracy and 96.72% F1-Score on the HTC dataset. Additionally, the parameters of the KDTMD model are only about 10% of the smallest baseline.

Suggested Citation

  • Rui Li & Xueyi Song & Yongliang Xie, 2025. "KDTMD: Knowledge distillation for transportation mode detection based on KAN," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-24, June.
  • Handle: RePEc:plo:pone00:0324752
    DOI: 10.1371/journal.pone.0324752
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324752
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0324752&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0324752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.