Author
Listed:
- Aline Armanini Stefanan
- Murilo Sagrillo
- Bruna G Palm
- Fábio M Bayer
Abstract
This paper proposes the MKSARMAX model for modeling and forecasting time series that can only take on values within a specified range, such as in the interval (0,1). The model is especially good for modeling double-bounded hydro-environmental time series since it accommodates bounded support and asymmetric distribution, making it advantageous compared to the traditional Gaussian-based time series model. The MKSARMAX models the conditional median of a modified Kumaraswamy distributed variable observed over time, by a dynamic structure considering stochastic seasonality and including autoregressive and moving average terms, exogenous regressors, and a link function. The conditional maximum likelihood method is employed to estimate the model parameters. Hypothesis tests and confidence intervals for the parameters of the proposed model are derived using the asymptotic theory of the conditional maximum likelihood estimators. Quantile residuals are defined for diagnostic analysis, and goodness-of-fit tests are subsequently implemented. Synthetic hydro-environmental time series are generated in a Monte Carlo simulation study to assess the finite sample performance of the inferences. Moreover, MKSARMAX outperforms βSARMA, SARMAX, Holt-Winters, and KARMA models in most accuracy measures analyzed when applied to useful water volume datasets, presenting for the first-step forecast at least 98% lower MAE, RMSE, and MAPE values than competitors in the Caconde UV dataset, and 54% lower MAE, RMSE, and MAPE values than competitors in the Guarapiranga UV dataset. These findings suggest that the MKSARMAX model holds strong potential for water resource management. Its flexibility and accuracy in the early forecasting steps make it particularly valuable for predicting flood and drought periods.
Suggested Citation
Aline Armanini Stefanan & Murilo Sagrillo & Bruna G Palm & Fábio M Bayer, 2025.
"Modified Kumaraswamy seasonal autoregressive moving average models with exogenous regressors for double-bounded hydro-environmental data,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-27, May.
Handle:
RePEc:plo:pone00:0324721
DOI: 10.1371/journal.pone.0324721
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324721. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.