Author
Listed:
- Paula Cifuentes
- Ismael Zamora
- Tatiana Radchenko
- Fabien Fontaine
- Albert Garriga
- Luca Morettoni
- Jesper Kammersgaard Christensen
- Hans Helleberg
- Bridget A Becker
Abstract
A comprehensive understanding of drug metabolism is crucial for advancements in drug development. Automation has improved various stages of this process, from compound procurement to data analysis, but significant challenges persist in the metabolite identification (MetID) of macromolecules due to their size, structural complexity, and associated computational demands. This study introduces new algorithms for automated Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) data analysis applicable to macromolecules. A novel peak detection approach based on the most abundant mass (MaM) is presented and systematically compared with the monoisotopic mass (MiM) approach, commonly used in small molecules MetID. Additionally, three structure visualization strategies, expanded (atom-level), non-expanded (monomer-level), and a hybrid mode, are evaluated for their impact on computation data processing time and interpretability, based on their distinct fragmentation strategies. The workflow was validated using six diverse datasets, comprising linear and cyclic peptides and oligonucleotides with both natural and unnatural monomers, covering a molecular weight range of 700–7630 Da. A total of 970 metabolites were identified under various experimental and ionization conditions. The MaM algorithm demonstrated higher scores and a greater number of matches, instilling greater confidence in the accurate prediction of metabolite structures, while the non-expanded visualization significantly reduced processing times (ranging from minutes to under an hour for most peptides). Furthermore, the visualization algorithm, which integrates monomer-level and atom/bond notation, enables clear localization of metabolic biotransformations. Compared to previous studies, the proposed workflow demonstrated reduced processing time, consistent detection of degradation products, and enhanced visualization capabilities, advancing automated MetID for macromolecules.
Suggested Citation
Paula Cifuentes & Ismael Zamora & Tatiana Radchenko & Fabien Fontaine & Albert Garriga & Luca Morettoni & Jesper Kammersgaard Christensen & Hans Helleberg & Bridget A Becker, 2025.
"An automated software-assisted approach for exploring metabolic susceptibility and degradation products in macromolecules using high-resolution mass spectrometry,"
PLOS ONE, Public Library of Science, vol. 20(8), pages 1-28, August.
Handle:
RePEc:plo:pone00:0324668
DOI: 10.1371/journal.pone.0324668
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324668. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.