IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0324639.html
   My bibliography  Save this article

Is there a competitive advantage to using multivariate statistical or machine learning methods over the Bross formula in the hdPS framework for bias and variance estimation?

Author

Listed:
  • Mohammad Ehsanul Karim
  • Yang Lei

Abstract

Purpose: We aim to evaluate various proxy selection methods within the context of high-dimensional propensity score (hdPS) analysis. This study aimed to systematically evaluate and compare the performance of traditional statistical methods and machine learning approaches within the hdPS framework, focusing on key metrics such as bias, standard error (SE), and coverage, under various exposure and outcome prevalence scenarios. Methods: We conducted a plasmode simulation study using data from the National Health and Nutrition Examination Survey (NHANES) cycles from 2013 to 2018. We compared methods including the kitchen sink model, Bross-based hdPS, Hybrid hdPS, LASSO, Elastic Net, Random Forest, XGBoost, and Genetic Algorithm (GA). The performance of each inverse probability weighted method was assessed based on bias, MSE, coverage probability, and SE estimation across three epidemiological scenarios: frequent exposure and outcome, rare exposure and frequent outcome, and frequent exposure and rare outcome. Results: XGBoost consistently demonstrated strong performance in terms of MSE and coverage, making it effective for scenarios prioritizing precision. However, it exhibited higher bias, particularly in rare exposure scenarios, suggesting it is less suited when minimizing bias is critical. In contrast, GA showed significant limitations, with consistently high bias and MSE, making it the least reliable method. Bross-based hdPS, and Hybrid hdPS methods provided a balanced approach, with low bias and moderate MSE, though coverage varied depending on the scenario. Rare outcome scenarios generally resulted in lower MSE and better precision, while rare exposure scenarios were associated with higher bias and MSE. Notably, traditional statistical approaches such as forward selection and backward elimination performed comparably to more sophisticated machine learning methods in terms of bias and coverage, suggesting that these simpler approaches may be viable alternatives due to their computational efficiency. Conclusion: The results highlight the importance of selecting hdPS methods based on the specific characteristics of the data, such as exposure and outcome prevalence. While advanced machine learning methods such as XGBoost can enhance precision, simpler methods such as forward selection or backward elimination may offer similar performance in terms of bias and coverage with fewer computational demands. Tailoring the choice of method to the epidemiological scenario is essential for optimizing the balance between bias reduction and precision.

Suggested Citation

  • Mohammad Ehsanul Karim & Yang Lei, 2025. "Is there a competitive advantage to using multivariate statistical or machine learning methods over the Bross formula in the hdPS framework for bias and variance estimation?," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0324639
    DOI: 10.1371/journal.pone.0324639
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324639
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0324639&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0324639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.