IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0324595.html
   My bibliography  Save this article

Cyber security Enhancements with reinforcement learning: A zero-day vulnerabilityu identification perspective

Author

Listed:
  • Muhammad Rehan Naeem
  • Rashid Amin
  • Muhammad Farhan
  • Faisal S Alsubaei
  • Eesa Alsolami
  • Muhammad D Zakaria

Abstract

A zero-day vulnerability is a critical security weakness of software or hardware that has not yet been found and, for that reason, neither the vendor nor the users are informed about it. These vulnerabilities may be taken advantage of by malicious people to execute cyber-attacks leading to severe effects on organizations and individuals. Given that nobody knows and is aware of these weaknesses, it becomes challenging to detect and prevent them. For the real-time zero-day vulnerabilities detection, we bring out a novel reinforcement learning (RL) methodology with the help of Deep Q-Networks (DQN). It works by learning the vulnerabilities without any prior knowledge of vulnerabilities, and it is evaluated using rigorous statistical metrics. Traditional methods are surpassed by this one that is able to adjust to changing threats and cope with intricate state spaces while providing scalability to cybersecurity personnel. In this paper, we introduce a new methodology that uses reinforcement learning for zero-day vulnerability detection. Zero-day vulnerabilities are security weaknesses that have never been exposed or published and are considered highly dangerous for systems and networks. Our method exploits reinforcement learning, a sub-type of machine learning which trains agents to make decisions and take actions to maximize an approximation of some underlying cumulative reward signal and discover patterns and features within data related to zero-day discovery. Training of the agent could allow for real-time detection and classification of zero-day vulnerabilities. Our approach will have the potential as a powerful tool of detection and defense against zero-day vulnerabilities and probably brings significant benefits to security experts and researchers in the field of cyber-security. The new method of discovering vulnerabilities that this approach provides has many comparative advantages over the previous approaches. It is applicable to systems with complex behaviour, such as the ones presented throughout this thesis, and can respond to new security threats in real time. Moreover, it does not require any knowledge about vulnerability itself. Because of that, it will discover hidden weak points. In the present paper, we analyzed the statistical evaluation of forecasted values for several parameters in a reinforcement learning environment. We have taken 1000 episodes for training the model and a further 1000 episodes for forecasting using the trained model. We used statistical measures in the evaluation, which showed that the Alpha value was at 0.10, thereby indicating good accuracy in the forecast. Beta was at 0.00, meaning no bias within the forecast. Gamma was also at 0.00, resulting in a very high level of precision within the forecast. MASE was 3.91 and SMAPE was 1.59, meaning that a very minimal percentage error existed within the forecast. The MAE value was at 6.34, while the RMSE was 10.22, meaning a relatively low average difference within actuals and the forecasted values. Results The results demonstrate the effectiveness of reinforcement learning models in solving complex problems and suggest that the model improves in accuracy with more training data added.

Suggested Citation

  • Muhammad Rehan Naeem & Rashid Amin & Muhammad Farhan & Faisal S Alsubaei & Eesa Alsolami & Muhammad D Zakaria, 2025. "Cyber security Enhancements with reinforcement learning: A zero-day vulnerabilityu identification perspective," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-33, May.
  • Handle: RePEc:plo:pone00:0324595
    DOI: 10.1371/journal.pone.0324595
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324595
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0324595&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0324595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.