Author
Listed:
- Siwen Fan
- Wanli Li
- Rui Xie
Abstract
This paper presented a self-tuning trajectory tracking control strategy for concrete pouring construction robots operating under external disturbances and system uncertainties. To enhance operational stability and robustness, the study integrated proportional-integral-derivative (PID) control with nonsingular fast terminal sliding mode control (NFTSMC), enabling faster convergence to the desired trajectory and reduced steady-state errors. Additionally, the study employed the crested porcupine optimizer (CPO) algorithm to automatically optimize PID control gains and NFTSMC sliding surface parameters, ensuring adaptability across varying conditions. The proposed control strategy was validated through extensive simulations, demonstrating superior trajectory tracking performance. The PID-NFTSMC controller achieved a maximum trajectory tracking error of 0.098740 and a root-mean-square (RMS) error of 0.007405 for Joint 1. For Joint 2 and Joint 3, the proposed controller exhibited maximum errors of 0.105880 and 0.088740, with RMS errors of 0.009859 and 0.007605, respectively. The convergence time for three joints was 0.1553s, 0.1540s and 0.0100s respectively. These results confirmed that concrete pouring construction robots operating had fast and high accuracy trajectory tracking and robustness against external disturbances. The findings highlight the practical significance of this approach in improving the precision and reliability of concrete pouring construction robots.
Suggested Citation
Siwen Fan & Wanli Li & Rui Xie, 2025.
"Self-tuning trajectory tracking control for concrete pouring construction robots based on PID-NFTSMC and CPO algorithm,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-24, May.
Handle:
RePEc:plo:pone00:0324550
DOI: 10.1371/journal.pone.0324550
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.