Author
Listed:
- Tao Yang
- Xuefeng Jiang
- Wei Li
- Peiyu Liu
- Jinming Wang
- Weijie Hao
- Qiang Yang
Abstract
Industrial sensor networks exhibit heterogeneous, federated, large-scale, and intelligent characteristics due to the increasing number of Internet of Things (IoT) devices and different types of sensors. Efficient and accurate anomaly detection of sensor data is essential for guaranteeing the system’s operational reliability and security. However, existing research on sensor data anomaly detection for industrial sensor networks still has several inherent limitations. First, most detection models usually consider centralized detection. Thus, all sensor data have to be uploaded to the control center for analysis, leading to a heavy traffic load. However, industrial sensor networks have high requirements for reliable and real-time communication. The heavy traffic load may cause communication delays or packets lost by corruption. Second, there are complex spatial and temporal features in industrial sensor data. The full extraction of such features plays a key role in improving detection performance. Nevertheless, the majority of existing methodologies face challenges in simultaneously and comprehensively analyzing both features. To solve the limitations above, this paper develops a cloud-edge collaborative data anomaly detection approach for industrial sensor networks that mainly consists of a sensor data detection model deployed at individual edges and a sensor data analysis model deployed in the cloud. The former is implemented using Gaussian and Bayesian algorithms, which effectively filter the substantial volume of sensor data generated during the normal operation of the industrial sensor network, thereby reducing traffic load. It only uploads all the sensor data to the sensor data analysis model for further analysis when the network is in an anomalous state. The latter based on GCRL is developed by inserting Long Short-Term Memory network (LSTM) into Graph Convolutional Network (GCN), which can effectively extract the spatial and temporal features of the sensor data for anomaly detection. The proposed approach is extensively assessed through experiments using two public industrial sensor network datasets compared with the baseline anomaly detection models. The numerical results demonstrate that the proposed approach outperforms the existing state-of-the-art models.
Suggested Citation
Tao Yang & Xuefeng Jiang & Wei Li & Peiyu Liu & Jinming Wang & Weijie Hao & Qiang Yang, 2025.
"Cloud-edge collaborative data anomaly detection in industrial sensor networks,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-25, June.
Handle:
RePEc:plo:pone00:0324543
DOI: 10.1371/journal.pone.0324543
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324543. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.