Author
Listed:
- Lillian Li
- Sung-In Back
- Jian Ma
- Yawen Guo
- Thomas Galeandro-Diamant
- Didier Clénet
Abstract
Developing vaccines with a better stability is an area of improvement to meet the global health needs of preventing infectious diseases. With the advancement of data science and artificial intelligence, innovative approaches have emerged. This manuscript highlights the applications of machine learning through two cases in which Bayesian optimization was used to develop viral vaccine formulations. The two case studies monitored the critical quality attributes of virus A in liquid form by infectious titer loss and virus B in freeze-dried form by glass transition temperature. Stepwise analysis and model optimization demonstrated progressive improvements of model quality and prediction accuracy. The cross-validation matrices of the models’ predictions showed high R² and low root mean square errors, indicating their reliability. The prediction accuracy of models was further validated by using test datasets. Model analysis using prediction error plot, Shapeley Additive exPlanations, permutation importance, etc. can provide additional insights into relations between model and experimental design, the influence of features of interest, and non-linear responses. Overall, Bayesian optimization is a useful complementary tool in formulation development that can help scientists make effective data-driven decisions.
Suggested Citation
Lillian Li & Sung-In Back & Jian Ma & Yawen Guo & Thomas Galeandro-Diamant & Didier Clénet, 2025.
"Bayesian optimization and machine learning for vaccine formulation development,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-19, June.
Handle:
RePEc:plo:pone00:0324205
DOI: 10.1371/journal.pone.0324205
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.