IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0323908.html
   My bibliography  Save this article

Spatial and temporal detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri through optimized scouting, sampling, DNA isolation, and qPCR amplification in California citrus groves

Author

Listed:
  • Nathaniel Ponvert
  • Frank Byrne
  • Monique J Rivera
  • Timo Rohula
  • Sandra Olkowski
  • Heshani De Silva Weligodage
  • Neil McRoberts
  • Judith K Brown

Abstract

Huanglongbing (citrus greening disease) is caused by the bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) (Alphaproteobacteria) and is one of the most destructive bacterial-vector diseases affecting the citrus industry. The bacterium is transmitted by the Asian citrus psyllid (ACP; Diaphorina citri). Early detection in citrus trees is challenging due to uneven distribution of CLas throughout the tree and a long pre-symptomatic phase of the disease. Due to these limitations, ACP sampling has been suggested as a more reliable early detection strategy. The objective of this study was to develop and optimize approaches for detecting CLas in ACP adults and nymphs collected in citrus groves in California using real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR). The goal was to establish the optimal number of ACP adults and nymphal instar life stages (stages 1–2, 3, or 4–5) that yielded the most reliable detection of CLas (Cq values ≤ 38). Results indicated that CLas detection correlated with psyllid developmental stage, with the 4th–5th instar nymphs (sample size of five to ten per tube) or adult ACP (sample size of three to ten per tube) providing the most consistent qPCR detection. While CLas detection rates increased with adult ACP age, nymphs were preferred for field sampling as adult ACP might have dispersed from non-infected trees, potentially misrepresenting the grove’s CLas status. Detection by droplet digital PCR confirmed the presence and genome copies of CLas in a subset of ACP across life stages. In field populations, detection rates in nymphs were consistent or stable throughout the year, whereas CLas detection in adults exhibited seasonal variation, with CLas detection and genome load peaking in January. These targeted ACP sampling strategies and optimized laboratory processing methods will facilitate CLas detection in psyllids for streamlining citrus greening disease management.

Suggested Citation

  • Nathaniel Ponvert & Frank Byrne & Monique J Rivera & Timo Rohula & Sandra Olkowski & Heshani De Silva Weligodage & Neil McRoberts & Judith K Brown, 2025. "Spatial and temporal detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri through optimized scouting, sampling, DNA isolation, and qPCR amplification in California citrus groves," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-22, May.
  • Handle: RePEc:plo:pone00:0323908
    DOI: 10.1371/journal.pone.0323908
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323908
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0323908&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0323908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.