Author
Listed:
- Rebeca Padovani Ederli
- Didier A Vega-Oliveros
- Aurea Soriano-Vargas
- Anderson Rocha
- Zanoni Dias
Abstract
Polysomnography is the standard method for sleep stage classification; however, it is costly and requires controlled environments, which can disrupt natural sleep patterns. Smartwatches offer a practical, non-invasive, and cost-effective alternative for sleep monitoring. Equipped with multiple sensors, smartwatches allow continuous data collection in home environments, making them valuable for promoting health and improving sleep habits. Traditional methods for sleep stage classification using smartwatch data often rely on raw data or extracted features combined with artificial intelligence techniques. Transforming time series into visual representations enables the application of two-dimensional convolutional neural networks, which excel in classification tasks. Despite their success in other domains, these methods are underexplored for sleep stage classification. To address this, we evaluated visual representations of time series data collected from accelerometer and heart rate sensors in smartwatches. Techniques such as Gramian Angular Field, Recurrence Plots, Markov Transition Field, and spectrograms were implemented. Additionally, image patching and ensemble methods were applied to enhance classification performance. The results demonstrated that Gramian Angular Field, combined with patching and ensembles, achieved superior performance, exceeding 82% balanced accuracy for two-stage classification and 62% for three-stage classification. A comparison with traditional approaches, conducted under identical conditions, showed that the proposed method outperformed others, offering improvements of up to 8 percentage points in two-stage classification and 9 percentage points in three-stage classification. These findings show that visual representations effectively capture key sleep patterns, enhancing classification accuracy and enabling more reliable health monitoring and earlier interventions. This study highlights that visual representations not only surpass traditional methods but also emerge as a competitive and effective approach for sleep stage classification based on smartwatch data, paving the way for future research.
Suggested Citation
Rebeca Padovani Ederli & Didier A Vega-Oliveros & Aurea Soriano-Vargas & Anderson Rocha & Zanoni Dias, 2025.
"Time-series visual representations for sleep stages classification,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-30, May.
Handle:
RePEc:plo:pone00:0323689
DOI: 10.1371/journal.pone.0323689
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323689. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.