Author
Listed:
- Sergio Alejandro Gómez-Ochoa
- Malte Möhn
- Michelle Victoria Malz
- Roger Ottenheijm
- Jan D Lanzer
- Felix Wiedmann
- Manuel Kraft
- Taulant Muka
- Constanze Schmidt
- Marc Freichel
- Rebecca T Levinson
Abstract
Background: Despite advances in understanding atrial fibrillation (AF) pathophysiology, there is limited agreement on the key genes driving its pathophysiology. To understand the genome-wide transcriptomic landscape, we performed a meta-analysis from studies reporting gene expression patterns in atrial heart tissue from patients with AF and controls in sinus rhythm (SR). Methods: Bibliographic databases and data repositories were systematically searched for studies reporting gene expression patterns in atrial heart auricle tissue from patients with AF and controls in sinus rhythm. We calculated the pooled differences in individual gene expression from fourteen studies comprising 534 samples (353 AF and 181 SR) to create a consensus signature (CS), from which we identified differentially regulated pathways, estimated transcription factor activity, and evaluated its performance in classifying validation samples as AF or SR. Results: Despite heterogeneity in the top differentially expressed genes across studies, the AF-CS in both chambers were robust, showing a better performance in classifying AF status than individual study signatures. Functional analysis revealed commonality in the dysregulated cellular processes between chambers, including extracellular matrix remodeling (highlighting epithelial mesenchymal transition, actin filament organization, and actin binding hallmark pathways), cardiac conduction (including cardiac muscle cell action potential, gated channel activity, and cation channel activity pathways), metabolic derangements (highlighting oxidative phosphorylation and asparagine n linked glycosylation), and innate immune system activity (mainly neutrophil degranulation, and TNFα signaling pathways). Finally, the AF-CS showed a good performance differentiating AF from controls in three validation datasets (two from peripheral blood and one from left ventricle samples). Conclusions: Despite variability in individual studies, this meta-analysis elucidated conserved molecular pathways involved in AF pathophysiology across its phenotypes and the potential of a transcriptomic signature in identifying AF from peripheral blood samples. Our work highlights the value of integrating published transcriptomics data in AF and the need for better data deposition practices.
Suggested Citation
Sergio Alejandro Gómez-Ochoa & Malte Möhn & Michelle Victoria Malz & Roger Ottenheijm & Jan D Lanzer & Felix Wiedmann & Manuel Kraft & Taulant Muka & Constanze Schmidt & Marc Freichel & Rebecca T Levi, 2025.
"The transcriptional landscape of atrial fibrillation: A systematic review and meta-analysis,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-23, May.
Handle:
RePEc:plo:pone00:0323534
DOI: 10.1371/journal.pone.0323534
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323534. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.