Author
Abstract
Palmprint recognition, as a biometric recognition technology, has unique individual recognition and high accuracy, and is broadly utilized in fields such as identity verification and security monitoring. Therefore, a palm print recognition model that integrates regions of interest and Gabor filters has been proposed to solve the problem of difficulty in feature extraction caused by factors such as noise, lighting changes, and acquisition angles that often affect palm print images during the acquisition process. This model extracts standardized feature regions of palmprint images through the region of interest method, enhances texture features through multi-scale Gabor filters, and finally uses support vector machines for classification. The experiment findings denote that the region of interest model performs better than other methods in terms of signal-to-noise ratio and root mean square error, with a signal-to-noise ratio of 0.89 on the GPDS dataset and 0.97 on the CASIA dataset. The proposed model performs the best in recognition accuracy and error convergence speed, with a final accuracy of 95%. The proposed model has the shortest running time, less than 0.4 seconds in all groups, especially less than 0.3 seconds in Group 4, demonstrating high recognition efficiency. The research conclusion shows that the palmprint recognition method combining regions of interest and Gabor filters has high efficiency and performance, and can effectively improve recognition accuracy.
Suggested Citation
Nan Zhang & Maolong Xi, 2025.
"A high-efficiency palmprint recognition model integrating ROI and Gabor filtering,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-19, June.
Handle:
RePEc:plo:pone00:0323373
DOI: 10.1371/journal.pone.0323373
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323373. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.