Author
Listed:
- Ole Bialas
- Edmund C Lalor
Abstract
Background:: In recent decades, studies modeling the neural processing of continuous, naturalistic, speech provided new insights into how speech and language are represented in the brain. However, the linear encoder models commonly used in such studies assume that the underlying data are stationary, varying to a fixed degree around a constant mean. Long, continuous, neural recordings may violate this assumption leading to impaired model performance. We aimed to examine the effect of non-stationary trends in continuous neural recordings on the performance of linear speech encoding models. Methods:: We used temporal response functions (TRFs) to predict continuous neural responses to speech while splitting the data into segments of varying length, prior to model fitting. Our Hypothesis was that if the data were non-stationary, segmentation should improve model performance by making individual segments approximately stationary. We simulated and predicted stationary and non-stationary recordings to test our hypothesis under a known ground truth and predicted the brain activity of participants who listened to a narrated story, to test our hypothesis on actual neural recordings. Results:: Simulations showed that, for stationary data, increasing segmentation steadily decreased model performance. For non-stationary data however, segmentation initially improved model performance. Modeling of neural recordings yielded similar results: segments of intermediate length (5–15 s) led to improved model performance compared to very short (1–2 s) and very long (30–120 s) segments. Conclusions:: We showed that data segmentation improves the performance of encoding models for both simulated and real neural data and that this can be explained by the fact that shorter segments approximate stationarity more closely. Thus, the common practice of applying encoding models to long continuous segments of data is suboptimal and recordings should be segmented prior to modeling.
Suggested Citation
Ole Bialas & Edmund C Lalor, 2025.
"Appropriate data segmentation improves speech encoding models: Analysis and simulation of electrophysiological recordings,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-11, May.
Handle:
RePEc:plo:pone00:0323276
DOI: 10.1371/journal.pone.0323276
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323276. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.