Author
Listed:
- Mohammad Junayed Hasan
- Jannat Sultana
- Silvia Ahmed
- Sifat Momen
Abstract
Occupational stress is a major concern for employers and organizations as it compromises decision-making and overall safety of workers. Studies indicate that work-stress contributes to severe mental strain, increased accident rates, and in extreme cases, even suicides. This study aims to enhance early detection of occupational stress through machine learning (ML) methods, providing stakeholders with better insights into the underlying causes of stress to improve occupational safety. Utilizing a newly published workplace survey dataset, we developed a novel feature selection pipeline identifying 39 key indicators of work-stress. An ensemble of three ML models achieved a state-of-the-art accuracy of 90.32%, surpassing existing studies. The framework’s generalizability was confirmed through a three-step validation technique: holdout-validation, 10-fold cross-validation, and external-validation with synthetic data generation, achieving an accuracy of 89% on unseen data. We also introduced a 1D-CNN to enable hierarchical and temporal learning from the data. Additionally, we created an algorithm to convert tabular data into texts with 100% information retention, facilitating domain analysis with large language models, revealing that occupational stress is more closely related to the biomedical domain than clinical or generalist domains. Ablation studies reinforced our feature selection pipeline, and revealed sociodemographic features as the most important. Explainable AI techniques identified excessive workload and ambiguity (27%), poor communication (17%), and a positive work environment (16%) as key stress factors. Unlike previous studies relying on clinical settings or biomarkers, our approach streamlines stress detection from simple survey questions, offering a real-time, deployable tool for periodic stress assessment in workplaces.
Suggested Citation
Mohammad Junayed Hasan & Jannat Sultana & Silvia Ahmed & Sifat Momen, 2025.
"Early detection of occupational stress: Enhancing workplace safety with machine learning and large language models,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-42, June.
Handle:
RePEc:plo:pone00:0323265
DOI: 10.1371/journal.pone.0323265
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.