Author
Listed:
- Ankita Sharma
- Shalli Rani
- Wadii Boulila
Abstract
The rise of Industry 5.0 focuses on merging advanced intelligence, automation, and human-centered teamwork in industrial settings. However, keeping interconnected IoT networks secure is still a challenging problem. This paper proposes a new security framework that combines Blockchain, Federated Transfer Learning, and zero trust network (ZTN) principles to improve IoT security in Industry 5.0. Blockchain is a decentralized ledger that ensures secure data sharing and protects model updates. Federated Transfer Learning allows model training across distributed IoT devices to keep data private. The ZTN approach enforces strict access rules, assuming that no entity is trusted by default. The proposed framework offers a scalable and resilient solution to protect next-generation industrial IoT networks, using Blockchain for data security, transfer learning for adaptability, and ZTN for strict access control. The ZTN architecture strengthens security by checking every access request and keeping the IoT system safe. The experimental results show good performance of the proposed method, with better accuracy, precision, recall, and F1 scores. The model achieved an accuracy of 0.85, 0.88, and 0.87 for learning rates of 0.01, 0.001, and 0.0001, respectively, at 100 epochs. The precision values reached 0.84, 0.87, and 0.86, while the recall scores were 0.82, 0.86, and 0.85, respectively. The F1-scores were recorded at 0.83, 0.86, and 0.85, which confirms the robustness of our model.
Suggested Citation
Ankita Sharma & Shalli Rani & Wadii Boulila, 2025.
"Blockchain-based zero trust networks with federated transfer learning for IoT security in industry 5.0,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-16, June.
Handle:
RePEc:plo:pone00:0323241
DOI: 10.1371/journal.pone.0323241
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323241. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.