Author
Listed:
- Yulu Dai
- Liang Hu
- Shutong Zhou
- Yanbin Liu
- Aixi Yang
Abstract
Emergency Vehicles (EVs) are of considerable significance in saving human lives and property damages. To promote the efficiency of emergency operation, signal preemption control could give priority to EVs heading toward the incident location. On the other hand, providing dynamic and precise route planning for EVs plays an important role in emergency rescue since traffic changes constantly. Furthermore, connected vehicle (CV) technology that incorporates advanced wireless communication technologies, offers a huge potential to promote the efficiency of EVs and maintain smooth traffic flow via collaborative optimization of routes and signals. This study presents a bi-level dynamic emergency route planning system considering signal preemption control, which builds on traffic flow combined with hierarchical bi-layer model predictive control (MPC), for more than one EV under partial CV environment. In this approach, the mobility of EVs is prioritized before decreasing the impact of EVs operation on normal traffic. In the upper layer, a road-level emergency route would be dynamically planned and updated after each time horizon, according to the network-wide traffic flow estimation under diverse CV market penetration ratios through loop detectors and Cellular-Vehicle-to-Everything (C-V2X) communication. In the lower layer, a lane-level emergency route that combined with signal preemption control would be planned to ensure the efficiency of EVs and reduce the adverse impact of signal preemption on normal traffic. In the end, a microscopic simulation environment for a real traffic network is carried out to test the effectiveness of the proposed system. The simulation results indicate that the proposed system provides reliable and practical emergency route planning and signal control services for EVs under different traffic flow conditions.
Suggested Citation
Yulu Dai & Liang Hu & Shutong Zhou & Yanbin Liu & Aixi Yang, 2025.
"A bi-level dynamic emergency route planning system considering signal preemption control using CV technology,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-25, May.
Handle:
RePEc:plo:pone00:0323209
DOI: 10.1371/journal.pone.0323209
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.