Author
Listed:
- Haizhen Wang
- Xiaojing Yang
- Na Jia
Abstract
Software Defined Networking (SDN) is an emerging network architecture and management method, whose core idea is to separate the network control plane from the data transmission plane. It is precisely because of this characteristic that SDN controllers are susceptible to external malicious attacks, the most common of which are Distributed Denial of Service (DDoS) attacks. This paper suggests a way to find DDoS attacks called ConvLTSM-MHA-TWD. It is based on the Convolutional Long Short-Term Memory Network (ConvLSTM) and three-way decision (TWD). It solves the problem of insufficient feature extraction in SDN environment and improves classification accuracy. This method uses ConvLSTM to extract data features, and uses multi-head attention (MHA) mechanism to learn the long-distance dependence relationship in the input data, and then constructs multi-granularity feature space. ConvLSTM and MHA outputs are added to form a residual connection to further enhance feature extraction and timing modeling capabilities and solve the problem of gradient disappearance during model training. Then the three-way decision theory is used to make decisions on network behaviors immediately. For the network behaviors that cannot be made immediately, the delayed decision is made, and the feature extraction and decision are made on this part of the network behaviors again. Finally, the classification results are output. This paper conducted experiments on data sets CICIDS2017 and DDoS SDN, with accuracy rates of 0.994 and 0.977, respectively, which has better overall performance, and is suitable for training large amounts of data.
Suggested Citation
Haizhen Wang & Xiaojing Yang & Na Jia, 2025.
"DDoS attack detection method based on improved convolutional long short-term memory and three-way decision in SDN,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-19, May.
Handle:
RePEc:plo:pone00:0322839
DOI: 10.1371/journal.pone.0322839
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322839. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.